Automatic Human Face Detection and Tracking using Cascaded Classifiers and Deformable Meshes
نویسندگان
چکیده
In this paper, we propose a novel method for fully automatic detection and tracking of human heads and faces in video sequences. The proposed algorithm consists of two modules: a face detection module and a face tracking module. The Detection module, detects the face region and approximates it with an ellipse at the first frame using a modified version of AdaBoost cascaded classifier. The detection module is capable of considering the 2-D head pose rotation. The tracking module utiliyes a combination of deformable mesh energy minimization and feature matching approaches. In order to track a face, features are extracted in the face region to tessellate the human face with triangular unstructured meshes. For tracking a mesh, it is necessary to define mesh energies including internal and external energies. We have used new energy definitions for both the internal and the external energies which can accurately track rigid and non-rigid motions of a face and facial features at subsequent frames. We tested the proposed method with different video samples like cluttered backgrounds, partial illumination variations, put on glasses, and 2-D and/or 3-D rotating and translating heads. The experimental results showed that the algorithm is rotation insensitive and has high accuracy, stability and also has convergence for face detection and tracking.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملAn Integrated System for Face Detection and Tracking
This paper presents an integrated system for face detection and tracking in video sequences. The system consists of two modules, namely face detection and face tracking. The automatic face detection is based on a non-holistic object detection approach that utilizes the appearance and the topology of facial components to robustly detect faces in images. Both statistical and structural pattern re...
متن کاملFace Expression Recognition and Analysis: The State of the Art
The automatic recognition of facial expressions has been an active research topic since the early nineties. There have been several advances in the past few years in terms of face detection and tracking, feature extraction mechanisms and the techniques used for expression classification. This paper surveys some of the published work since 2001 till date. The paper presents a time-line view of t...
متن کامل